Packet Sampling (PSAMP)

Tanja Zseby, FhG FOKUS
zseby@fokus.fhg.de
Overview

- Initiative started by AT&T labs in autumn 2001
- IETF WG since summer 2002
- Goals
 - Description of sampling methods for
 - Configuration of sampling schemes and parameters
 - Reporting of sampling schemes and parameters to applications
 - Protocol for exporting (parts of) packets
- Close cooperation with IPFIX
Differences to IPFIX

- **IPFIX:**
 - Flow information export
 - Focus on export protocol
 - Configuration not considered
 - No flow selection

- **PSAMP:**
 - Packet export
 - Focus on configuration
 - Description of packet selection schemes
 - IPFIX chosen as basis for PSAMP protocol
PSAMP and IPFIX

Packet Capturing

Sampling

Filtering

Classification & Flow Recording

Flow Sampling

Flow Filtering

Observation Point:
- Router
- Probe

Exporting process

PSAMP

packet reports

IPIFX

flow records

flow records

both steps may be trivial (1:1 sampling, no filtering)
Current Drafts

- Framework draft-ietf-psamp-framework-10.txt
 - Overall Framework, Problem Statement
 - Example applications
 - Requirements for packet reporting
 - Status: IESG review

- Packet Selection draft-ietf-psamp-sample-tech-07.txt
 - Terminology
 - Packet selection methods
 - Sampling Parameters
 - Status: IESG review

- Information Model draft-ietf-psamp-info-02.txt
 - Status: Expired, waiting for IPFIX

- PSAMP MIB draft-ietf-psamp-mib-04.txt
 - Status: Waiting for info model

- PSAMP Protocol draft-ietf-psamp-protocol-01.txt
 - Status: Expired, waiting for IPFIX
Terminology

• Try to be consistent with IPFIX terminology
 – some common terms (e.g. observation point, flow, etc.)
 – use different terms if meaning is different e.g.
 • packet stream: (sub)set of packets (e.g. output of selection process)
 • flow: set of packets with common properties

• Filtering: deterministic selection based on the packet content

• Sampling: everything else
 – Content-independent Sampling
 • Deterministic or random selection independent of packet content
 • Examples: systematic, random sampling that is independent of packet content.
 – Content-dependent Sampling
 • Random selection dependent on packet content

• Mandatory to implement one of the described schemes in packet selection draft
Schemes and Parameters: Sampling

• Systematic count-based
 – start and stop in accordance to spatial packet position (packet count).
 – Input parameters:
 • Interval length (in number of packets)
 • Spacing between intervals (in number of packets)

• Systematic time-based
 – start and stop in accordance to temporal packet position (arrival time).
 – Input parameters:
 • Interval length (in µsec)
 • Spacing (in µsec)

• Not covered:
 – Systematic sampling with combined time- and count based trigger
 – Non-equal spacing
Schemes and Parameters: Sampling

• Random n-out-of-N
 – Random selection of n packets from N
 – Input parameters:
 • Population size N
 • Sample size

• Uniform Probabilistic
 – Same sampling probability for each packet
 – Input parameters:
 • Sampling probability p

• Non-Uniform Probabilistic
 – Sampling probability depends on input
 – Function for calculation probability p ➔ Vendor dependent

• Flow State Probabilistic
 – Sampling probability depends on flow state (of own flow or other flows)
 – Policy for selecting flows ➔ Vendor dependent
Schemes and Parameters: Filtering

- **Field Match**
 - Filtering according to fields described as IPFIX information elements
 - Concatenation of filters: only AND, no NOT or OR
 - Input Parameters
 - Fields
 - Selection range(s)

- **Hashing**
 - Apply bit mask to packet header and/or the first N bytes of the payload, create unique bit string
 - Optionally, link with another pre-defined bit string (seed)
 - Apply hash function on the string
 - Select the packet if the result falls into one or more a selection range(s)
 - Input Parameters
 - Input mask (as bit strings)
 - Seed
 - Selection interval
 - Hash-function
Schemes and Parameters

• Router-state selection
 – Select packet on the basis of its route/treatment in the router (e.g. IF to which it is routed, no route found, etc.)
 – Router state (when packet should be selected) ➔ up to vendor

• Combined Schemes
 – Combination of the defined sampling and filtering schemes
 – E.g. for stratified sampling
 – Coupled via STREAM_ID

[your scheme here]
<table>
<thead>
<tr>
<th>Selection Scheme</th>
<th>deterministic</th>
<th>content-</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>selection</td>
<td></td>
<td>dependent</td>
<td></td>
</tr>
</tbody>
</table>

| systematic | X | _ | Sampling |
| count-based | | | |

| systematic | X | - | Sampling |
| time-based | | | |

| random | - | - | Sampling |
| n-out-of-N | | | |

| random | - | (X) | Sampling |
| uniform probabilistic| | | |

| random | - | (X) | Sampling |
| non-uniform probabil.| | | |

| random | - | (X) | Sampling |
| non-uniform flow-state| | | |

| field match | X | X | Filter |

| hash function | X | X | Filter |

| router state filter | X | (X) | Filter |
Hash-based Selection

• Hash-based Selection
 – Emulation of Random Sampling:
 • Synchronization of sampling processes at multiple observation points
 – Can be used for Packet Digest:
 • Packet identifier to correlate packet arrivals at different observation points

• Mandatory Hash-Function: BOB
 – Selected based on criteria
 • uniformity (for random emulation)
 • collisions (for digesting)

• IF hash-based sampling is implemented BOB MUST be used
 – But it is not mandatory to implement a hash-based selection to be PSAMP compliant

• Further Optional
 – CRC32
 – IPSX
Open Issues and Next Steps

- IPv6 input for hash functions
- Packet IDs
- PSAMP protocol
 - Requirements from framework document
 - Based on IPFIX
- Further schemes
Thank You